
6.842 Randomness and Computation March 12, 2014

Lecture 11
Lecturer: Ronitt Rubinfeld Scribe: Aikaterini Sotiraki

1 Lecture overview

In this lecture, we will introduce the basic notions of Fourier analysis and linearity testing.
Boolean functions f : {0, 1}n → {0, 1} are very important in many areas, such as complexity, machine
learning, coding theory and combinatorics. The main tool to study them will be Fourier/harmonic
analysis because this will allow us to study “structural properties” of boolean functions. For example,
if a boolean function:

• has low complexity

• does not depend on all the bits of the input:

– dictator: The function depends only on one bit of the input.

– k- junta: The function depends only on a subset of size k of the bits of the input

• is “fair”, which means that no variable has to much influence

• is a homomorphism: f(x
⊕
y) = f(x)⊕ f(y)

• spreads out or is concentrated

2 Preliminaries

A boolean function is a function:
f : {0, 1}n → {0, 1}

For every x = (x1, ..., xn) ∈ {0, 1}n, y = (y1, ..., yn) ∈ {0, 1}n, we define the operation:

x
⊕

y = (x1, ..., xn)
⊕

(y1, ..., yn) = (x1 ⊕ y1, ..., xn ⊕ yn)

where ⊕ is the xor operation.
However, we will use an alternative representation of boolean function, where f : {1,−1}n → {1,−1}
and the operation is defined as follows:

x� y = (x1, ..., xn)� (y1, ..., yn) = (x1 · y1, ..., xn · yn)

where · is the usual multiplication in integers.
The truth table of xor, using the new notation, is represented as follows:

� +1 –1
+1 +1 –1
–1 –1 +1

The set of functions G = {g|g : {−1,+1}n → R} is a vector space with dimension 2n, which means that
for any set of basis functions of size 2n, every g ∈ G can be uniquely expressed as a linear combination
of the basis functions.
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3 Basis functions

There are more than one sets of basis functions that we can use:

• The “natural” basis: indicator functions

ea(x) =

{
1 if x = a
0 otherwise

This basis is orthonormal and is used to describe functions via their “truth table”:

f(x) =
∑
a

f(a)ea(x)

Example: for n = 1

e+1(x) =

{
1 if x = 1
0 if x = 1

e−1(x) =

{
1 if x = −1
0 if x = +1

Now, if f : {−1,+1} → R, with f(+1) = b+1 and f(−1) = b−1, then

f(x) = b+1 · e+1(x) + b−1 · e−1(x)

• Parity functions:

For S ⊂ [n], χS(x) =
∏
i∈S

xi

We will define that χ∅(x) = 1,∀x ∈ {−1,+1}n.

4 Useful facts and Theorems

• Fact 0: χS(x) · χT (x) = χS4T (x), where S4T = (S \ T ) ∪ (T \ S) (symmetric difference)
Proof

χS(x) · χT (x) =
∏
i∈S

xi ·
∏
i∈T

xi

=
∏

i∈S∩T
x2i ·

∏
i∈S4T

xi =
∏

i∈S∩T
1 ·

∏
i∈S4T

xi

=
∏

i∈S4T

xi

• The set of parity functions forms an orthonormal basis of the vector space G.
Proof
We will define the inner product < f, g >= 1

2n

∑
x∈{−1,+1}n

f(x)g(x).
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– If S = T :

< χS , χT >=< χS , χS >=
1

2n

∑
x∈{−1,+1}n

(χS(x))2 = 1

– If S 6= T :

< χS , χT > =
1

2n

∑
x∈{−1,+1}n

χS(x) · χT (x) =

=
1

2n

∑
x∈{−1,+1}n

χS4T (x)

=
1

2n

∑
x∈{−1,+1}n

∏
i∈S4T

xi

=
1

2n

∑
pairs x,x⊕j

(
∏

i∈S4T

xi +
∏

i∈S4T

(x⊕j)i)

= 0

where x⊕j is equal to x with the j-th bit flipped, namely if x = (x1, ..., xn), then we define
x⊕j such that x⊕ji = −xi if i = j and x⊕ji = xi otherwise. Also, since from hypothesis we
have that S 6= T ⇒ S4T 6= ∅, we pick a j such that j ∈ S4T . The final calculation follows
from the fact that∏

i∈S4T

xi +
∏

i∈S4T

(x⊕j)i = (xj
∏

i∈(S4T )\{j}

xi)− (xj
∏

i∈(S4T )\{j}

(x⊕j)i) = 0

• Theorem 1 Every f ∈ G can be written as f(x) =
∑
S⊂[n]

f̂(S)χS(x), where f̂(S) are the Fourier

Coefficient and

f̂(S) =< f, χS >=
1

2n

∑
x∈{−1,+1}n

f(x)χS(x)

Proof
Since the set of parity functions forms an orthonormal basis, for every f ∈ G, we have that
f(x) =

∑
S⊂[n]

aSχS(x).

Now, we need to calculate the coefficients ai.

< f, χS > =
1

2n

∑
x∈{−1,+1}n

f(x)χS(x)

=
1

2n

∑
x∈{−1,+1}n

(
∑
T⊂[n]

aTχT (x)) · χS(x)

=
1

2n

∑
x∈{−1,+1}n

aS(χS(x))2

=
2n

2n
aS

= aS
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• Fact 1: f is a parity function:

– if and only if f(x) = χS(x) for an S ⊂ [n]

– if and only if there exists an S ⊂ [n] such that:

1. f̂(S) = 1 and

2. for all T 6= S, f̂(T ) =< χS , χT >= 0

Proof
The first part is obvious from the definition of the parity functions.
For the second part:

– If f = χS , then form the fact that the set of parity functions is an orthonormal basis:
f̂(S) =< χS , χS >= 1 and for all T 6= S, f̂(T ) =< χS , χT >= 0.

– If f̂(S) = 1 and for all T 6= S, f̂(T ) = 0, then f =
∑

T⊂[n]
f̂(T )χT (x) = χS(x). So, f is a parity

function.

• Fact 2: f̂(S) = 1− 2Prx∈{−1,+1}n(f(x) 6= χS(x))
Proof

f̂(S) =
1

2n

∑
x∈{−1,+1}n

f(x)χS(x)

=
1

2n

∑
x s.t. f(x)=χS(x)

(+1) +
1

2n

∑
x s.t. f(x)6=χS(x)

(−1)

= (1− Prx∈{−1,+1}n(f(x) 6= χS(x)))− Prx∈{−1,+1}n(f(x) 6= χS(x))

= 1− 2Prx∈{−1,+1}n(f(x) 6= χS(x))

• Fact 3: If S 6= T , then Prx∈{−1,+1}n(χS(x) = χT (x)) = 1/2
Proof
Let f = χT , then using fact 0, we have

f̂(S) = 0

and using fact 2 we get that

f̂(S) = 1− 2Prx∈{−1,+1}n(χT (x) 6= χS(x))

So,

1− 2Prx∈{−1,+1}n(χT (x) 6= χS(x)) = 0

⇒ Prx∈{−1,+1}n(χT (x) 6= χS(x)) = 1/2

⇒ Prx∈{−1,+1}n(χT (x) = χS(x)) = 1/2
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• Plancherel’s Theorem

Theorem 2 For f, g : {−1,+1}n → R, we have

< f, g >≡ E{−1,+1}n [f(x)g(x)] =
∑
S⊂[n]

f̂(S) · ĝ(S)

Proof

< f, g > =<
∑
S⊂[n]

f̂(S)χS(x),
∑
T⊂[n]

ĝ(T )χT (x) >

=
∑
S⊂[n]

∑
T⊂[n]

f̂(S)ĝ(S)· < χS , χT >

=
∑
S⊂[n]

f̂(S)ĝ(S)

where the first equality is immediate from the definition, the second is due to the bilinearity of the
inner product and the third due to the orthogonality of the parity functions.

• Parseval’s Theorem

Corollary 3 For f : {−1,+1}n → R, we have

< f, f >≡ E{−1,+1}n [f2(x)] =
∑
S⊂[n]

f̂(S)2

Proof
We use the Plancherel’s theorem for g = f .

A special case of the above corollary is when f : {−1,+1}n → {−1,+1}, then

< f, f >≡ E{−1,+1}n [f2(x)] =
∑
S⊂[n]

f̂(S)2 = 1

• Fact 4: E[f ] = f̂(∅)
Proof

E[f ] = E[f(x) · 1] = E[f(x) · χ∅(x)]

=
∑
S⊂[n]

f̂(S) · χ̂∅(S)

= f̂(∅) · χ̂∅(∅) = f̂(∅)

The second equality is true because of Parseval’s theorem and the third because

χ̂∅(S) =

{
1 if S = ∅
0 otherwise
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• Fact 5:

E[χS(x)] =

{
1 if S = ∅
0 otherwise

Proof Using fact 4, we have that E[χS(x)] = χ̂S(∅) and from fact 1

χ̂S(∅)] =

{
1 if S = ∅
0 otherwise

5 Linearity (homomorphism) testing

Our goal is to quickly test if a function over a group is linear, that is

∀x, y, f(x) + f(y) = f(x+ y)

In many cases, it is enough to check whether f is close to homomorphism. These cases include:

• Checking correctness of programs computing matrix, algebraic, trigonometric functions

• Probabilistically Checkable Proofs

Definition 4 Let f over domain of size N , then f is ε-close to linear if we can change at most εN
values to turn it into linear. Otherwise, f is ε-far from linear.

Our goal is that the query complexity, measured in terms of the domain size N , is constant and
independent of N . The tester should behave as follows:

• If f is linear, then the test should pass with probability more than 2/3.

• If f is ε-far from linear, then the test should fail with probability more than 2/3.

• If f is not linear, but is ε-close to linear, then either output is ok.

Example: Linearity testing for f : GF (2)n → GF (2)
If x = (x1, ..., xn), y = (y1, ..., yn) ∈ {0, 1}n, then

x+ y = (x1 ⊕ y1, ..., xn ⊕ yn)

So, f is linear if and only if for all x, y ∈ {0, 1}n, f(x)⊕f(y) = f(x+y). It can be shown that f is linear
if and only if

f ∈ {fa|fa(x) =

n∑
i=1

ai · xi mod 2 for (a1, ..., an) ∈ {0, 1}n}

Example: Linearity testing for f : {−1,+1}n → {−1,+1}
If x = (x1, ..., xn), y = (y1, ..., yn) ∈ {−1,+1}n, then

x� y = (x1 · y1, ..., xn · yn)
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So, f is linear if and only if for all x, y ∈ {−1,+1}n, f(x) · f(y) = f(x � y). It can be shown that f is
linear if and only if f is a parity function.

Proposed Tester:
Repeat r = O( 1

ρ ) times:

• Pick x, y ∈R {0, 1}n

• If f(x) · f(y) 6= f(x� y) output “FAIL” and halt

Output “PASS”

Analysis:

• If f is linear, then the tester passes with probability 1.

• If f is such that Prx,y(f(x) · f(y) 6= f(x � y)) ≥ ρ, then we can choose the constant in O( 1
ρ ) so

that the tester fails with probability at least 2/3.

We want to show that if Prx,y(f(x) · f(y) 6= f(x� y)) < ε, then f is ε-close to linear. However, this is
non trivial.
Example:[Coppersmith]
Let f : Z3k → Z3k−1 , such that

f(3h+ d) = h, for h < 3k, d ∈ {−1, 0, 1}

Then, f satisfies f(x)+f(y) 6= f(x+y) for only 2/9 of the choices of x, y ∈ Z3k (i.e. δf = 2/9). However,
f is 2/3-far from linear!

So, we need to prove that if Prx,y(f(x) · f(y) 6= f(x � y)) < ε, then f is ε-close to linear. First,
we need to prove the following lemma.

Lemma 5 1− δ ≡ Prx,y(f(x) · f(y) · f(x� y) = 1) = 1
2 + 1

2

∑
S⊂[n]

f̂(S)3

Proof
Let us define c(x, y) = 1+f(x)·f(y)·f(x�y)

2 , then

c(x, y) =

{
1 if x, y PASS
0 if x, y FAIL

So, c(x, y) is an indicator variable describing the result of the test.
We know that:

1− δ = Ex,y[
1 + f(x) · f(y) · f(x� y)

2
]

=
1

2
+

1

2
Ex,y[f(x) · f(y) 6= f(x� y)]
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But,

Ex,y[f(x) · f(y) 6= f(x� y)] = Ex,y[(
∑
S⊂[n]

f̂(S)χS(x)) · (
∑
T⊂[n]

f̂(T )χT (y)) · (
∑
U⊂[n]

f̂(U)χU (x� y))] =

=
∑

S,T,U⊂[n]

f̂(S)f̂(T )f̂(U)Ex,y[χS(x) · χT (y) · χU (x� y)]

Also,

Ex,y[χS(x) · χT (y) · χU (x� y)] = Ex,y[
∏
i∈S

xi
∏
t∈T

yj
∏
k∈U

(xk · yk)]

= Ex,y[
∏

i∈S4U

xi
∏

j∈T4U

yj ]

= Ex,y[
∏

i∈S4U

xi]Ex,y[
∏

j∈T4U

yj ]

But,

Ex,y[
∏

i∈S4U

xi] =

{
1 if S4U = ∅
0 otherwise

and

Ex,y[
∏

j∈T4U

yj ] =

{
1 if T4U = ∅
0 otherwise

So,

Ex,y[χS(x) · χT (y) · χU (x� y)] =

{
1 if S = T = U
0 otherwise

As a result,

Ex,y[f(x) · f(y) 6= f(x� y)] =
∑

S,T,U⊂[n]

f̂(S)f̂(T )f̂(U)Ex,y[χS(x) · χT (y) · χU (x� y)] =
∑
S⊂[n]

f̂(S)3

Consequently,

1− δ =
1

2
+

1

2

∑
S⊂[n]

f̂(S)3

Now, using the above lemma we can prove the following theorem:

Theorem 6 If f is ε-far from linear, then

δ ≡ Prx,y(f(x) · f(y) 6= f(x� y)) ≥ ε

Proof
From the lemma we have that:

1− δ =
1

2
+

1

2

∑
S⊂[n]

f̂(S)3 ⇒ 1− 2δ =
∑
S⊂[n]

f̂(S)3
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So,

1− 2δ =
∑
S⊂[n]

f̂(S)3

≤ max
S

(f̂(S))
∑
S⊂[n]

f̂(S)2

≤ max
S

(f̂(S))

≤ f̂(T )

≤ 1− 2Prx(f(x) 6= χT (x))

For the third equation we used Parseval’s Theorem, for the forth we picked a T such that f̂(T ) =

maxS(f̂(S)) and for the final computation the fact 2.
As a result,

δ ≥ Prx(f(x) 6= χT (x)) ≥ ε

Linearity testing is possible over other domains with constant query complexity, even for general non-
abelian groups. However, in this case, there is a slightly weaker relationship between the parameters.

6 Self-correction

Given a program P computing linear f that is correct on at least 7/8 of the inputs, even though we do
not know which ones, can we correctly compute f on each input?
Self-Corrector:
Repeat r = O( 1

ρ ) times:

• Pick y ∈R {0, 1}n

• Let guess(x)← P (y) · f(x� y)

Output most common guess

• If P is correct in both calls, then the guess is correct.

• Since y is uniformly distributed, then x� y is also uniformly distributed, so:

Pr(P wrong in either y or x� y ) ≤ 1/4
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